Cotangent bundle quantization : Entangling of metric and magnetic field
نویسنده
چکیده
For manifolds M of noncompact type endowed with an affine connection (for example, the Levi-Civita connection) and a closed 2-form (magnetic field) we define a Hilbert algebra structure in the space L 2 (T * M) and construct an irreducible representation of this algebra in L 2 (M). This algebra is automatically extended to polynomial in momenta functions and distributions. Under some natural conditions this algebra is unique. The non-commutative product over T * M is given by an explicit integral formula. This product is exact (not formal) and is expressed in invariant geometrical terms. Our analysis reveals this product has a front, which is described in terms of geodesic triangles in M. The quantization of δ-functions induces a family of symplectic reflections in T * M and generates a magneto-geodesic connection Γ on T * M. This symplectic connection entangles, on the phase space level, the original affine structure on M and the magnetic field. In the classical approximation, the 2-part of the quantum product contains the Ricci curvature of Γ and a magneto-geodesic coupling tensor.
منابع مشابه
Wick quantization of cotangent bundles over Riemannian manifolds
A simple geometric procedure is proposed for constructing Wick symbols on cotangent bundles to Riemannian manifolds. The main ingredient of the construction is a method of endowing the cotangent bundle with a formal Kähler structure. The formality means that the metric is lifted from the Riemannian manifold Q to its phase space T ∗Q in the form of formal power series in momenta with the coeffic...
متن کاملThe Thermodynamic Properties of Polarized Metallic Nanowire in the Presence of Magnetic Field
In this article, the second quantization method has been used to investigate some thermodynamic properties of spin-polarized metallic nanowire in the presence of magnetic field at zero temperature. We have been observed that in different magnetic field, the equilibrium energy of system increases as the density increases. The spin-polarization parameter corresponding to the equilibrium state of ...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملQuantization of Equivariant Vector Bundles
The quantization of vector bundles is defined. Examples are constructed for the well controlled case of equivariant vector bundles over compact coadjoint orbits. (Coadjoint orbits are symplectic spaces with a transitive, semisimple symmetry group.) In preparation for the main result, the quantization of coadjoint orbits is discussed in detail. This subject should not be confused with the quanti...
متن کاملIdentification of Riemannian foliations on the tangent bundle via SODE structure
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005